RPC Radiy’s FPGA-Based Safety Controller certified for SIL 3 by Exida

Exida, one of the leading certification bodies for functional safety and security standards, assessed RPC Radiy’s RadICS FPGA-Based Safety Controller (FSC) per the relevant requirements of IEC 61508:2010, parts 1-7 and found that it meets requirements providing Safety Integrity Level (SIL) 3.

Radiy’s RadICS FSC will read input signals, perform user-defined application layer logic and write results to the output signals within the stated response time. The FSC can be used for design and development of SIL 3 level applications.

“Radiy has developed unique technology that utilizes FPGAs to implement logic solver capabilities,” said Dave Butler, exida evaluating assessor. “Their strong development process ensures the delivery of products that achieve high levels of functional safety.”

The following is from the exida assessment report:

“The audited development process as tailored and implemented for the RPC Radiy FPGA-based Safety Controller (FSC) RadICS development project, complies with the relevant safety management requirements of IEC 61508 SIL 3.

“The assessment of the FMEDA, done to the requirements of IEC 61508, has shown that the FPGA-based Safety Controller (FSC) RadICS can be used in a Low Demand safety related system in a manner where the calculated PFD AVG is within the allowed range for SIL 3 (HFT >= 0) according to table 2 of IEC 61508-1.

The RadICS platform (see Fig. 1) is a set of general-purpose building blocks that can be configured and used to implement application-specific functions and systems. The RadICS platform is composed of various standardized modules, each based on the use of FPGA chips as computational engines.

The basic configuration for the RadICS platform consists of an instrument rack containing two logic modules, as well as up to 14 other I/O modules and fibre-optic communication modules. Logic modules gather input data from input modules, execute user-specified logic, and update the value driving the output modules, as well as gather diagnostic and general health information from all I/O modules. The I/O modules provide interfaces with field devices (for example, sensors, transmitters, actuators). The functionality of each module is driven by the logic implemented in the on-board FPGA(s).

The basic set of I/O modules consists of analogue and digital input, and digital output modules. There are also special-purpose I/O boards designed for specific field detectors and devices, such as resistance temperature detectors (RTDs), thermocouples, ultra-low voltage AI boards used for neutronic instrumentation, actuator controller modules, and fibre-optic communication modules that can be used to expand the I&C system to multiple chassis. It is also possible to provide inter-channel communications between 2, 3 or 4 channels via fibre-optic communications directly between logic modules.

The backplane of the RadICS platform provides external interfaces to power supply, process I/Os, communication links, and local inputs and indicators. The internal backplane interfaces provide connections to the various modules that are installed within the chassis by means of a dedicated, isolated, point-to-point low-voltage differential signalling (LVDS) interface.

Nike Air Max